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Abstract

In this thesis we propose a novel pipeline for classifying unknown hand gestures. For this
purpose, we train a state-of-the-art skeletal action recognition model MS-G3D [Liu et al. 2020b]
fitted on a greek sign language dataset [Adaloglou et al. 2020] after reconstructing its skeletons
with a tool like MediaPipe [Lugaresi et al. 2019].

Further, we suggest a novel segmentation technique for the unknown gestures by introducing
the recently developed Entropic Open-Set loss [Dhamija et al. 2018] to MS-G3D. Lastly, if un-
known gestures are detected by the segmentation step, we propose a way to extract embeddings
from the model.

We conclude by showing the effectiveness of the techniques, 95% overlapping accuracy rate for
the segmentation technique and up to 87% classification accuracy on the embeddings, given 4
samples of unknown gestures per class. Additionally, we propose various ways to improve this
pipeline for more error-sensitive applications in the Future Works section.
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Introduction

The sole justification for mathematical
contemplation is the usefulness of the
actions that follow from it, by which I
mean the following: Humans can freely
control their actions and can bring forth,
through cool calculation, experiences
which they instinctively desire, but
which they cannot bring about by a
direct impulse of the will, called a goal.

L.E. J. Brouwer

Throughout human history, gestures were actions of prime importance for human communi-
cation. In the service of self-preservation, people subjugated the meaning of these gestures
over to the next generation. At lower levels of culture through parent-to-child teaching, and,
in addition, at higher levels of culture through institutions, through semiotic literature and now
even through datasets and gesture recognition algorithms. Gestures are used to signify social
significance through firm handshakes and salutes, to coordinate car or airplane traffic, to com-
municate with animals, to signify approval through clapping or knocking, to communicate with
deaf people through sign languages, or, more relevant today, to signify that you are present in a
zoom call, among others.

Today, computers are tasked with prescribing or describing gestures. These gestures can be rep-
resented as 3D models, such as skeletal graphs or volumetric meshes, or they can be represented
as they appear in 2D images with optional depth mapping.

Most of the work around computational gestures has been done to prescribe gestures to robots
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1. Introduction

or computer animation rigs, which is done through forward/inverse kinematics for skeletal data
[Paul 1981], mass-spring systems for volumetric data [Tang and Hui 2009] and more advanced
techniques such as posture control via PD controllers [Tomei 1991] or operational space control
[Khatib 1987].

This thesis focuses on describing gestures with computers. Practical applications include con-
trolling an augmented reality headset [Cao et al. 2019], monitoring actions/drowsiness/intent of
car drivers through a webcam before they execute their decisions [Molchanov et al. 2016] [Ding
], interacting with industrial robots [Lei et al. 2019], sign language recognition [Konstantinidis
et al. 2018], playing a game through a webcam or communicating in video conferences.

In order to describe gestures, they first have to be recorded, either visually or mechanically.
Visually, gestures are recorded in through optical systems such as standard RGB video, depth
videos as provided with the popular Kinect or optical tracking of performers annotated with
passive markers. Mechanically, gestures can be recorded through wired gloves (also referred
to as datagloves or cybergloves) or less commonly through inertia guided sensors or stretch
sensors.

The video representation (appearance-based representation) can utilise more information such
as shading from the sun or background context. For example, if one tries to classify traffic police
hand signals, the behaviour of the cars in the background can be used as an additional clue to
get better performance. Background information can, however, also lead to unintended training
biases. In the previous example, the traffic gesture system should base predictions primarily
around the gestures and not around the behaviour of the cars, for example. Another example is
a gesture recognition system that detects some gestures based on whether the user wears gloves
when it should not matter.

The 3D skeletal representation meanwhile gives a more consistent environment, is perspective
invariant and is not susceptible to biases based on the background but, conversely, cannot take
advantage of background video clues such as colour.

In practice, the data is often converted from one format into the other. For converting appearance-
based data to skeletal data, many tools exist. At the time of writing, there are a few popular
tools to convert appearance-based data to skeletal data, such as OpenPose [Cao et al. 2018]
which achieves near real-time detection with GPU acceleration for 2D skeleton recognition and
Google’s MediaPipe [Lugaresi et al. 2019] which manages to create real-time 3D skeletons us-
ing only CPU power, even on a smartphone. Furthermore, Vibe [Maro et al. 2020] or HRNet
[Sun et al. 2019] provide state-of-the-art alternatives trading in power and real-time capability
for higher accuracy.

Research in the field of recognising and classifying skeletal movements is called action recog-
nition. It is done primarily on coarse human skeleton models recorded through a system like the
Kinect, which is then post-processed to get accurate skeletal representations. Popular datasets
in skeletal action recognition include [Shahroudy et al. 2016a] [Liu et al. 2020a] [kin ]. The
research in this field carries over well to gesture recognition and is discussed in more detail in
the Related Work Section.
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1.1. Problem statement

1.1. Problem statement

We are interested in providing a solution for near real-time gesture recognition and segmentation
of gestures that are unknown at training time. As a prerequisite, we are interested in segment-
ing the unknown gestures from meaningless movements first. Whenever this segmentation is
successful, we are then interested in classifying these unknown meaningful gestures.

Such a system would allow users to create their own gestures on the fly and incorporate them
with industrial or gaming applications. A good example of real-time user-created commands in
video games is Nintendogs commercial voice commands [Nintendo 2005]. We target two main
applications in this thesis, detecting gestures from headset mounted cameras like the HoloLens
and detecting gestures through webcam support. The skeletal representation of gestures is more
suitable for this task as it is perspective invariant and, in addition, uses fewer data and has fast
support through tools like MediaPipe [Lugaresi et al. 2019]. The data for these problems feature
upper-body skeletons only, as these can be derived from a webcam or derived facing away from
a headset such as the HoloLens.

3
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Related Work

2.1. Early work

A good survey of early computer-based gesture recognition systems can be found in [Sturman
and Zeltzer 1994] and [Richard 1993]. The latter is the first survey to taxonomise gesture
recognition systems into template-based approaches, statistics-based approaches and neural-
network-based approaches, referred to more generally as feature-extraction approaches here.
In addition, it mentions the similarities between handwriting detection; however, due to the 3-
dimensional nature of hand gestures, hand gesture detection is a significantly more challenging
problem.

2.1.1. Template-based approaches

The first attempts of computerised hand gesture recognition were straightforward and often used
linear classifiers together with lookup tables for each joint. We call these template-based ap-
proaches. The Nintendo PowerGlove, for example, had a sensor with low accuracy, effectively
mapping each finger to roughly four states (completely retracted to fully extended with two ad-
ditional in-between states). Programming gestures could be made by mapping all gestures to an
exhaustive table of finger combinations. A similar approach was used by the MIT media glove,
only that they detected the skeleton through LED markings on a glove which function as video
annotations [Sturman and Zeltzer 1994]. [Grimes 1981] of Bell Lab Technologies was the first
to try to recognise American Deaf sign language with a wired glove and attempted to do this
with hard-wired circuitry.

These can be effective on a small number of gestures. For example, [Tolentino 2014] achieved
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a 93% accuracy for distinguishing the 26 letters of ASL. This approach becomes infeasible for
more gestures, as all the templates have to be manually encoded instead of being learnt.

2.1.2. Feature-extraction based approaches

Kramer, who commercialised the CyberGlove [Kramer et al. 1991] in 1990 for research pur-
poses, had the first feature-based approach to gesture recognition, where each degree-of-freedom
(DOF) is linked to a dimension of a vector space. He used a ”bayesian decision rule-based pat-
tern matching” approach according to a Microsoft survey [Sturman and Zeltzer 1994]. [Sturman
and Zeltzer 1994] mentions two early vector-based approaches, one using principal component
analysis by ATR Research Labs in Japan and the first neural network-based approach by Fels,
who used a 3-stage forward neural network to detect the hands [Fels and Hinton 1993]. In par-
ticular, Fels recorded the joint positions and the movement direction of the joints to create a total
of 203 gesture-to-word vocabulary and achieved a high accuracy of 94% with this approach on
7822 training examples. In addition, Fels normalised the gesture based on the minimum and
maximum flex angles of the gestures.

Until the late 2000s, early 2010s, the leading choice of model for gesture recognition were
hidden Markov model-based due to the insensitivity to temporal variation and computational
performance, as shown in surveys of human gesture recognition [Mitra and Acharya 2007]
[Cheng et al. 2015]. One of the first HMM approaches came from [Yang and Xu 1994] to
recognise nine gestures. [Wilson and Bobick 1999] merges hidden Markov based models with
neural networks where each state has a neural network estimating the variation of the Gaussian
probability density of its output.

Other approaches in this time included multi-class support vector machines [Dardas and Geor-
ganas 2011], Sugeno type fuzzy inference system [Kishore and Kumar 2012], Kalman filters
[Jeong et al. 2002], Haar wavelet based techniques [Rautaray 2012], ICP matching [Trindade
et al. 2012], Genetic algorithms [Ghotkar et al. 2012] and more, see [Sarkar et al. 2013] which
gives a great overview of methods pre 2013.

2.2. Recent work / Neural network-based approaches

With increasing computational power, it became possible to differentiate between a larger num-
ber of classes. Larger datasets like [Shahroudy et al. 2016a], [Liu et al. 2020a] and skeletal-
based [kin ] enabled benchmarking of skeletal-based methods for action recognition. These
datasets worked on a coarse representation of the entire human body skeleton (not just gestures)
and are fairly noisy. Kinetics 400 is a dataset published by DeepMind which has been processed
with tools such as OpenPose [Cao et al. 2018], MediaPipe [Lugaresi et al. 2019], Vibe [Maro
et al. 2020] or HRNet [Sun et al. 2019]. MediaPipe and OpenPose are the projects with the
largest support behind them. They are readily available as they work out of the box without
much configuration required and can be run without a GPU, albeit slower. Both are used in this
thesis.

Video-based classification techniques are also used, taking advantage of recent breakthroughs
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in video recognition, such as [Duan et al. 2021] which uses 3D-CNNs based on SlowFast [Fe-
ichtenhofer et al. 2019], by rendering the skeletons as heatmap videos. This approach achieved
equal performance to [Liu et al. 2020b].

The most faithful and complete benchmark at the time of writing can be found at [Niais 2021]
which base their ranking on the [Shahroudy et al. 2016a] and [Liu et al. 2020a] dataset, see
Figure 2.1.

Since actions, as well as hand gestures, are time-based data, popular techniques from sentence
prediction have been repurposed for gesture recognition, such as the Recursive Neural Networks
(RNN), the Long-short term memory (LSTM) architecture, and the attention-mechanism [Si
et al. 2019].

Spatio-temporal graph convolutional neural networks and video-based 3D-CNNs outperform
all other methods in the field at the time of writing. Our thesis builds on spatio-temporal graph
convolutional neural networks, specifically on MS-G3D [Liu et al. 2020b]. However, our seg-
mentation technique can be used on all methods that use a Cross-Entropy loss in the final layer.

2.3. Spatio-temporal graph convolutional neural

networks

Due to the curse of dimensionality, learning on high dimensional data is challenging. A se-
quence of skeletal data can quickly have high dimensionality. In our case, we use 75 joints each
containing 3 spatial dimensions/channels per frame, and although there is no fixed frame count,
the average number of frames per gesture is 17 which gives a 17 · 75 · 3 = 3825 dimensional
data vector.

In the geometric deep learning paper [Bronstein et al. 2021] mention that the best model to train
some data X without imbuing geometric or ordinal structure on the dimensions would have to
have the following form introduced by the deep set model in [Zaheer et al. 2018]:

f(X) = �

 
M

xi2X

 (xi)

!
, where �, are generic learnable functions,

and
M

is an aggregation function like sum, average, min, max, etc.

and f satisfies 8P 2 Sn.f(PX) = Pf(X)

where Sn is the set of all permutations of size n.
(2.1)

[Bronstein et al. 2021] provide a general definition for graph neural networks, where geometric
structure is imbued to the model by an adjacency matrix A 2 G in addition to the data X, and
instead of applying  to every node in isolation it is a binary function applied to the node and
its neighbourhood. The neighbourhood of a node v is defined as N (v) := {w|(v, w) 2 A}

We define F to be the entire layer of the graph neural network which has to satisfy permutation-
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Year Model name Citation Cross-Subject score Cross-View score

2014 Lie Group [Vemulapalli et al. 2014] 50.1 52.8
2015 H-RNN [Du et al. 2015] 59.1 64.0
2016 Part-aware LSTM [Shahroudy et al. 2016b] 62.9 70.3
2016 Trust Gate ST-LSTM [Liu et al. 2016] 69.2 77.7
2017 Two-stream RNN [Wang and Wang 2017] 71.3 79.5
2017 STA-LSTM [Song et al. 2016] 73.4 81.2
2017 Ensemble TS-LSTM [Lee et al. 2017] 74.6 81.3
2017 Visualization CNN [Liu et al. 2017] 76.0 82.6
2017 C-CNN + MTLN [Ke et al. 2017] 79.6 84.8
2017 Temporal Conv [Kim and Reiter 2017] 74.3 83.1
2017 VA-LSTM [Zhang et al. 2017] 79.4 87.6
2018 Beyond Joints [Wang and Wang 2018] 79.5 87.6
2018 ST-GCN [Yan et al. 2018] 81.5 88.3
2018 DPRL [Tang et al. 2018] 83.5 89.8
2019 Motif-STGCN [Wen et al. 2019] 84.2 90.2
2018 HCN [Li et al. 2018] 86.5 91.1
2018 SR-TSL [Si et al. 2018] 84.8 92.4
2018 MAN [Xie et al. 2018] 82.7 93.2
2019 RA-GCN [Song et al. 2019] 85.9 93.5
2019 DenseIndRNN [Li et al. 2020] 86.7 93.7
2018 PB-GCN [Thakkar 2018] 87.5 93.2
2019 AS-GCN [Li et al. 2019] 86.8 94.2
2019 VA-NN (fusion) [Zhang et al. 2019] 89.4 95.0
2019 AGC-LSTM (Joint&Part) [Si et al. 2019] 89.2 95.0
2019 2s-AGCN [Shi et al. 2019b] 88.5 95.1
2020 SGN [Zhang et al. 2020] 89.0 94.5
2020 GCN-NAS [Peng et al. 2019] 89.4 95.7
2019 2s-SDGCN [Wu et al. 2019] 89.6 95.7
2019 DGNN [Shi et al. 2019a] 89.9 96.1
2020 MV-IGNET [Wang et al. 2020] 89.2 96.3
2020 4s Shift-GCN [Cheng et al. 2020b] 90.7 96.5
2020 DecoupleGCN-DropGraph [Cheng et al. 2020a] 90.8 96.6
2020 PA-ResGCN-B19 [Song et al. 2020] 90.9 96.0
2020 MS-G3D [Liu et al. 2020b] 91.5 96.2
2021 EfficientGCN-B4 [Song et al. 2021] 91.7 95.7
2021 CTR-GCN [Chen et al. 2021] 92.4 96.8

Figure 2.1.: Benchmark for Skeletal Action Recognition on the NTU-60 [Shahroudy et al. 2016a] dataset
by [Niais 2021].
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equivariance, ensuring no information is given about the order of the data:

F (X,A) :=

2

6664

f(x1,A)
...

f(xN ,A)

3

7775
, where F satisfies 8A 2 G.8P 2 Sn.PF (X,A) = F (PX,PAPT )

(2.2)

This is a general definition of a graph neural network, [Bronstein et al. 2021] calls them
message-passing GNNs:

f(xu, A) = �

0

@xu,
M

v2N (u)

 (xu, xv)

1

A , where � and  are generic learnable functions,

and
M

is an aggregation function like sum, maximum, etc.
(2.3)

Attention-based graph neural network layers are a specific subset of GNN layers, with  (xu, xv)
being split into a product a(xu, xv) ·  (xv):

f(xu, A) = �

0

@xu,
M

v2N (u)

a(xu, xv) ·  (xv)

1

A , with the same properties. (2.4)

Convolutional graph neural network layers are a subset of attention-based GNN layers, with
a(xu, xv) := wuv ·  (xv):

f(xu, A) = �

0

@xu,
M

v2N (u)

wuv ·  (xv)

1

A , with the same properties. (2.5)

Image-based convolutional neural network layers are a grid-based subset of graph convolutional
neural network layers with A = Ggrid, where the weights are denoted as W 2 RW⇥H⇥C⇥fl with
fl being the number of filters in the l-th layer.

f(xi,j,c) = �

 
HX

m=1

WX

n=1

CX

c=1

xi+m,j+n,c ·wm,n,c

!
, where � is usually ReLU activation function

(2.6)

Time convolutional neural network layers are a segment-based subset of grid-based graph con-
volutional neural network layers, meaning they are simply 1D convolutional neural networks,
where the weights are W 2 RT⇥C⇥fl with fl being the number of filters in the l-th layer.
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f(xi,c) = �

 
TX

t=1

CX

c=1

xi+t,c ·wt,c

!
, where � is usually the ReLU activation function (2.7)

These convolutional neural networks are multi-scale, meaning they are interleaved by coarsen-
ing/pooling layers on the grid structure: CNN(x) = Pool(F (x)) and perform a residual step
in addition: ResNet(x) = Pool(x + F (x)). In graph convolutional neural networks applied to
action recognition, the neighbourhoods of the skeletal input sequence can be defined with dif-
ferent combinations of spatial, temporal and spatiotemporal edges, see Figure 2.2. TCN [Kim
and Reiter 2017] only applies a standard temporal convolution with no graph structure, while
ST-GCN [Yan et al. 2018] adds spatial convolutions before applying temporal convolutions and
MS-G3D combines these into a large spatiotemporal convolution, where the skeletons are time-
wise fully connected, meaning each node belonging to frame t is connected to all other nodes
belonging to other frames.

Figure 2.2.: Possible geometric structures of the skeletal data for the use in spatial graph convolutional
neural networks. In the left illustration, spatial and temporal structure is separated as in
ST-GCN [Yan et al. 2018]. The center illustrates the spatio-temporal structure that MS-
G3D [Liu et al. 2020b] uses and the right illustration partitions the nodes by distance. The
graphics were taken from [Liu et al. 2020b]

In this section, we explain TCN [Kim and Reiter 2017] introducing temporal convolutions to
this problem, ST-GCN [Yan et al. 2018] introducing spatial convolutional neural networks to
this problem, AS-GCN [Li et al. 2019] which introduces larger neighbourhoods to spatial con-
volutional neural networks, and lastly, MS-G3D [Liu et al. 2020b] which introduces spatio-
temporal convolutional neural networks to this problem.

2.3.1. TCN

TCN/TempConv [Kim and Reiter 2017] is a residual temporal convolutional neural network.
The entire skeleton is interpreted as a vector with each spatial coordinate of a joint modelling a
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2.3. Spatio-temporal graph convolutional neural networks

separate channel with no spatial information in-between them, and no normalisation is applied
on the coordinates, see Figure 2.3.

f(xi,c) := �

 
TX

t=1

CX

c=1

xi+t,c ·wt,c

!

F (X) := � (X ·W) , the temporal convolutional layer
TCN(X) := Pool(X+ F (X)) , the TCN module with pooling and residual connection

(2.8)

The entire architecture has 10 layers, the first being a temporal convolutional layer with 64 fil-
ters/output channels, followed by 9 residual temporal convolutional layers with output channel
sizes [64, 64, 64, 128, 128, 128, 256, 256, 256], followed by an average pooling layer, a regular
feed-forward layer of size 64 and finally a Softmax layer. On this, the cross-entropy loss is
applied for training. See Figure 2.4 for a graphical representation of the model.

Figure 2.3.: A visualisation of the TCN channels over time taken from [Kim and Reiter 2017]

2.3.2. ST-GCN

To explain ST-GCN, we use the notation introduced in MS-G3D [Liu et al. 2020b]. The human
skeleton is given as an adjacency matrix A 2 G ✓ RN⇥N , where Ai,j = 1 if the i-th joint is
connected with the j-th joint, otherwise it is 0.

Actions or gestures are defined as X 2 RT⇥N⇥C , where T is the number of frames in the
gesture, N is the number of joints in the skeleton, and C are the number of dimensions/channels.
In the first layer, C represents the number of spatial dimensions of the given skeleton sequence.
Skeleton sequences generated by MediaPipe create two-dimensional skeletons C(0) = 2 while
OpenPose generates three-dimensional skeletons C(0) = 3. We used MediaPipe as it was the
faster framework and resulted in greater classification performance. Further, we denote Xt =

11
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Figure 2.4.: The TCN architecture visualised taken from [Kim and Reiter 2017]

Xt,:,: as the skeleton features at time t and xt,n = Xt,n,: as the C dimensional feature vector for
node vn at time t.

In the ST-GCN model, spatial convolutions are applied first, followed by temporal convolutions;
see the left image of Figure 2.2. Hence our graph A model only the spatial relationship of joints
at frame t (without time edges).

We define the neighbour set of node vti as B(vti) := {vtj | d(vtj, vti)  D} for a given maximal
distance D. d is the edge distance between two vertices. In ST-GCN D = 1 is used. With D = 1
the neighbourhood can also be represented as the adjacency matrix eA = A + I , containing all
direct neighbours and itself.

ST-GCN suggests three ways of partitioning the neighbourhoods, namely uni-labelling, distance
partitioning and spatial configuration partitioning. See Figure 2.5 for a visualisation of the
partitioning schemes. The partitioning schemes are defined as follows:

• In uni-labelling, each neighbour of xti belongs to the same partition.

• In distance partitioning, the neighbours are partitioned by distance. Since D = 1, this
leads to a distance 0 label containing xti and a distance 1 label containing all direct neigh-
bours of xti.

• In spatial configuration partitioning, the distance 0 neighbour xti belongs to its own par-
tition, and the distance one neighbours are partitioned by their orientation to the gravity
centre of the skeleton, either facing it (centripetal partition) or facing away from it (cen-
trifugal partition).

Each partition of the neighbourhood xti shares a learnable weight vector wi 2 RC capturing
important features of that partition. The output value of a single spatial convolutional layer at
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2.3. Spatio-temporal graph convolutional neural networks

Figure 2.5.: On the left is the uni-labelling partitioning scheme, in the middle is the distance partitioning
scheme with D = 1 and on the right is the spatial configuration partitioning. The visualisa-
tion has been taken from the ST-GCN paper [Yan et al. 2018]

node vti using the uni-labelling partitioning method is defined as follows:

f(xti, A) = �

0

@
X

vtj2B(vti)

1

|B(vti)|
xtj ·wi

1

A (2.9)

We define the following matrices to rewrite the expression in a concise form:

W =

2

6664

w1

...

wN

3

7775
2 RN⇥C , representing the learnable weights for each node and channel.

F (Xt) =

2

6664

f(xt1)
...

f(xtN)

3

7775
2 RN⇥C , the output of the spatial convolutional layer for every node and channel.

Due to [Kipf and Welling 2017] we can rewrite F (Xt) as:

F (Xt) = �
⇣
eD� 1

2 eAeD� 1
2XtW

⌘
, where eA = A+ I (distance  1 neighbourhood)

eD is the diagonal degree matrix of eA with
eDii =

X

j

eAij =
X

j

Aij + Iij

(2.10)

In general, we denote the P partitions of the learnable weights by a superscript w(p) and W(p)

respectively.
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For example, the output layer of the spatial convolutional layer for distance partitioning is:

F (Xt) = �

 
X

p2P

D(p)�
1
2A(p)D(p)�

1
2XtW

(p)

!
, where A(0) = I

A(1) = A

D(p) is the diagonal degree matrix of A(p) with

D(p)
ii

=
X

j

A(p)
ij

(2.11)

Lastly, to capture edge weights in ST-GCN, another learnable matrix M(p) is introduced, scal-
ing the contribution of a nodes feature to its neighbouring nodes. Each partition gets its own
learnable matrix. The final ST-GCN spatial convolutional layer looks as follows:

F (Xt) = �

 
X

p2P

M(p) �D(p)�
1
2A(p)D(p)�

1
2XtW

(p)

!
, where � denotes the Hadamard product.

(2.12)

The temporal convolution is now applied on the output F (X) in the same way as TCN [Kim
and Reiter 2017] with an additional residual connection. In the 4th and 7th layer an additional
pooling layer is applied. This forms the ST-GCN module:

STGCN(X) = Pool(X+ TCN(F (X))) (2.13)

The ST-GCN module is repeated 9 times with channel sizes [64, 64, 64, 128, 128, 128, 256,
256, 256], after which a global average pooling layer of size 256 is applied, after which the final
Softmax layer is applied.

2.3.3. AS-GCN and MS-G3D

AS-GCN [Li et al. 2019] introduces larger distances D > 1 in the neighbourhood, result-
ing in higher-order polynomials of the adjacency matrix. The distance partitioning concept
can be extended to arbitrary sized distances. The neighbourhoods of partition p are defined
as B(p)(vi) = {vj|d(vj) = p} and are encoded by the length-p adjacency matrix defined as
A(p) := Ap. The problem with this approach is that Ap

ij
= Ap

ji
equals the number of paths

between vertex i and vertex j of size k. The number of paths rise exponentially as k grows.
D(p)�

1
2A(p)D(p)�

1
2Xt performs a weighting based on the number of paths which is unintuitive,

when instead, as noted by MS-G3D, it could perform a weighting based only on the connectivity
and distance.

MS-G3D solves this by defining A(p) to be the following binary matrix:
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A(p)
ij

:=

8
><

>:

1, if d(vi, vj) = p

1, if i = j

0, else
(2.14)

or equivalently,

A(p) := I+ [Ap � 1] = I+ [(A+ I)p � 1]�
⇥
(A+ I)p�1 � 1

⇤
(2.15)

MS-G3D merges spatial and temporal convolutions into one by convolving on the graph con-
necting all the skeletons in a sliding window of size ⌧ , not to be confused with the length of
the gesture T . This is done by defining new features at frame t [X(⌧)]t containing not only the
features Xt of the skeleton at frame t, but also the features in the sliding window surrounding
it: Xt�⌧/2, . . . ,Xt�1,Xt+1, . . . ,X⌧/2 and zero padding values outside the range Xt<0_t�T = 0.

The structure of the spatiotemporal is defined by the adjacency matrix A(p)
(⌧) connecting all skele-

tons densely in the time frame of ⌧ and its corresponding diagonal degree matrix D(p)
(⌧). Formally:

A(p)
(⌧) :=

2

6664

A(p) . . . A(p)

... . . . ...

A(p) . . . A(p)

3

7775
2 R⌧N⇥⌧N , [D(p)

(⌧)]ii :=
X

j

[A(p)
(⌧)]ij, [X(⌧)]t :=

2

6664

Xt�⌧/2

...

Xt+⌧/2

3

7775
2 RT⇥⌧N⇥C

(2.16)

Note that a dilation factor d 2 N can be introduced to the sliding window. In that case [X(⌧)]t is
modified to be:

[X(⌧)]t :=

2

6666666664

Xt�d·(⌧/2)

Xt�d·(⌧/2�1)

...

Xt+d·(⌧/2�1)

Xt+d·(⌧/2)

3

7777777775

2 RT⇥⌧N⇥C (2.17)

Furthermore, MS-G3D does not use the learnable edge weight matrices M(p) but instead, adds
the learnable edge weight matrices Ares

(p)
(⌧) directly to A(p)

(⌧) with a similar effect.

The new updated formula is the MS-G3D layer. After specifying ⌧ (the sliding window size)
and d (the dilation factor) the equation is as follows. If d is not specified it is assumed to be 1.

MS-G3D(X, ⌧, d)t := F (Xt) := �

 
PX

p=1

D(p)
(⌧)

� 1
2
⇣
A(p)

(⌧) +Ares
(p)
(⌧)

⌘
D(p)

(⌧)

� 1
2 [X(⌧)]tW

(p)

!

(2.18)
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The ⌧ sized-window does not range over the entire input skeleton tensor X 2 RT⇥N⇥C . For
this reason, information shared over distances longer than ⌧ have to be exchanged. This is
done by collecting the output of the MS-G3D(X, ⌧, d) function and feeding it into a temporal
convolution unit just like the models before it, in this case, it is referred to as MS-TCN. Note
that the temporal convolution module MS-TCN is always applied, even if ⌧ = T . MS-TCN
consists of parallel standard temporal convolutions with dilations 1,2,3 and 4, in addition to a
max-pooling layer and a simple 1x1 convolution. The output of these parallel convolutions gets
concatenated, and a residual connection of a 1x1 convolution of stride 2 is added. The network
architecture is visualised in Figure 2.6.

Together, applying MS-G3D and then MS-TCN is referred to as an STGC module which is
then repeated r times. The STGC module can contain multiple MS-G3D modules in parallel if
accuracy is preferred over performance. Also, a standard spatial skeleton convolution with no
window (⌧ = 1) is applied in the factorised pathway with a corresponding temporal convolution.
For a visualisation, see Figure 2.6. The standard settings, which we borrowed, with r = 3
concatenated STGC modules with output feature channel sizes of 96, 192 and 384, respectively.
At the start of each STGC module, the temporal dimension is downsampled with stride 2, except
for the first STGC module. Furthermore, at the end of each STGC module, except for the last,
batch normalisation is applied. After the final STGC module, a global average pooling layer is
applied, after which a single feedforward layer is applied. Then a cross-entropy loss is applied,
comparing the predicted output after applying the Softmax function with the true labels.

Figure 2.6.: A visualisation of the full MS-G3D architecture and its submodules taken from [Liu et al.
2020b]

2.4. Entropic Open-Set Loss

All positive examples are alike; each
negative example is negative in its own
way.

[Zhou and Huang 2001]
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2.4.1. Softmax loss

In recognition tasks, the Softmax layer, sometimes hidden in the cross-entropy loss, is com-
monly used in the final step of the neural network to create a vector of probability values. It is
also used in MS-G3D.

The k-th entry of the output vector of the Softmax layer is trained to be 1.0 if the input data
represents the k-th gesture. More specifically, it is trained to give the probability that the input
data represents the k-th gesture under the assumption that it is one of the N = |Cgestures| ges-
tures of the Softmax function. This property is enforced by the fact that the sum of the vector
entries/probabilities have to add up to one and ensures that the neural network does not have to
learn this property.

For c 2 Cgestures the Softmax and the probability distributions arising from it are defined as:

smc(x) :=
exc

P
c02Cgestures

exc0
= P [Y = c|x] (2.19)

Then one can proceed with a maximum likelihood estimation on the Softmax probabilities to
get the corresponding cross-entropy loss.

L(✓;Dtrain) = argmax
✓

Y

(x,y)2Dtrain

Y

c02Cgestures

P [Y = c0|x]yc0

= argmax
✓

log

0

@
Y

(x,y)2Dtrain

Y

c02Cgestures

P [Y = c0|x]yc0
1

A

= argmax
✓

X

(x,y)2Dtrain

X

c02Cgestures

log
�
P [Y = c0|x]yc0

�

= argmax
✓

X

(x,y)2Dtrain

X

c02Cgestures

yc0 · logP [Y = c0|x]

= argmax
✓

X

(x,y)2Dtrain

X

c02Cgestures

yc0 · log smc0(x)

= argmin
✓

X

(x,y)2Dtrain

X

c02Cgestures

�yc0 · log smc0(x)

= argmin
✓

X

(x,y)2Dtrain

Jsm(x; y)

= argmin
✓

1

|Dtrain|
X

(x,y)2Dtrain

Jsm(x; y)

(2.20)

After applying the algebraic manipulation from above, it is now in the standard form on which
stochastic gradient descent can be applied. Since our label y is a one-hot encoding we can
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deduce c from y (the non-zero entry filled with 1.0) and rewrite Jsm(x) as:

Jsm(x) =
X

c02Cgestures

�yc0 · log smc0(x)

= � log smc(x)

= �xc + log

0

@
X

c02Cgestures

exc0

1

A

(2.21)

Intuitively, when xc (the value of the target class before applying the softmax) is significantly
larger than the other values, the losses cancel as illustrated by this equation1:

log

0

@
X

c02Cgestures

exc0

1

A ⇡ max
c02C

xc0 = xc (2.22)

2.4.2. Entropic Open-Set loss

In this thesis, we are not only interested in distinguishing known classes of gestures. For this
purpose, we create the following categories:

• Cknown: are meaningful classes which are known at training time. The final layer has
size |Cknown| representing probabilities over these known gestures.

• Cunknown: are meaningful classes which are unknown at training time and do not have
a class in the final layer representing them.

• Cbackground: is a catch all class for all meaningless movements, such as the movements of
the hands in-between two gestures.

Distinguishing between meaningful gestures, whether known or unknown, is effectively solved
with embeddings, as we define in the section on embeddings 3.3. However, distinguishing
unknown meaningful gestures from meaningless hand movements remains an open/unsolved
research question which we try to address in this thesis. We try to solve this problem with two
approaches discussed in the section on segmentation 3.2.

In deep learning-based recognition models, a latent space is created that maps semantically
similar images/gestures to the same label and semantically dissimilar images/gestures to dif-
ferent labels. Our meaningless in-between movements do not have a shared meaning outside
of being in-between. Recognising whether a gesture is meaningful or not lies at the heart of
open-set recognition [Geng et al. 2021], except that meaningful known gestures are referred
to as known known classes (KKCs), meaningful unknown gestures are referred to as unknown
known classes (UKCs) and meaningless in-between movements are referred to as known un-
known classes (KUCs), sometimes referred to as the background set or the universum set.

1As discussed here: https://stackoverflow.com/questions/17187507/why-use-softmax-
as-opposed-to-standard-normalization
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2.4. Entropic Open-Set Loss

[Dhamija et al. 2018] [Schnyder and Guenther 2021] recently proposed a novel loss function,
called the Entropic Open-Set loss, which was proposed to reject unknown classes based on
thresholding the output probabilities element-wise. During training time the dataset Dtrain con-
tains both meaningful gestures (KKCs) and meaningless gestures (KUCs).

JE(x) =

(
� log (smc(x)) y 2 Cknown of class c
� 1

|Cknown|
P

c02Cknown
log (smc0(x)) y 2 Cbackground

(2.23)

As proven in [Dhamija et al. 2018] JE is minimised for any y 2 Cbackground if and only if all
Softmax responses are equal. This is only the case, when the input vector to the final Softmax
layer, referred to as the deep feature vector F , has equal vector entries itself. We call this

subspace Feq = c ·

2

6664

1
...

1

3

7775
.

The loss incentivises the model to predict the same probability if the input gesture does not
belong to a meaningful class (KUC) by pushing meaningless movements to the subspace Feq.
If the input gesture is a known meaningful gesture, the loss incentivises the model to push all
other gestures away from the subspace Feq. The paper then proceeds by thresholding the output
probabilities element-wise to determine whether the input should be rejected or is meaningful.
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3

Gesture2Vec

The Gesture2Vec pipeline, see Figure 3.1, is a system for classifying unknown hand gestures
in near real-time. First, the video frames containing the unknown gestures are converted into
skeletal sequences using a skeletal reconstruction tool supporting hand skeletons like MediaPipe
[Lugaresi et al. 2019] or OpenPose [Cao et al. 2018]. Then, Gesture2Vec takes the skeleton se-
quences and segments them by deciding for each skeletal frame whether or not it contains a
meaningful unknown gesture or not. This process is done with two MS-G3D models trained on
the greek sign language dataset [Adaloglou et al. 2020], one is trained on the Entropic Open-Set
loss, and one is trained on the Cross-Entropy loss with an additional background class. Con-
secutive skeletal frames with a ”contain meaningful gesture” prediction are then taken together
and run through MS-G3D [Liu et al. 2020b] again, extracting embeddings from the latent space
of the final two layers. Finally, these unseen embeddings can be used to learn unknown mean-
ingful gestures in an unsupervised way or in a supervised way. We verify the effectiveness of
the embeddings by classifying them with supervised machine learning methods introduced in
section 3.3.

First, we will introduce the datasets, then we will explain the segmentation process and lastly
we explain the Gesture2Vec embeddings. In the next chapter, the effectiveness of these methods
is analysed.
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Figure 3.1.: The Gesture2Vec Pipeline, from video sequence, to skeleton sequence, to embeddings and
segmentation splits, to the final prediction.
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3.1. Datasets

3.1.1. Greek sign language dataset

The greek sign language dataset [Adaloglou et al. 2020] is a large scale RGB+D dataset which
contains 10290 greek sentences. These sentences are represented as a sequence of frames and
referred to as the continuous GSL dataset. In addition, [Adaloglou et al. 2020] also provides an
isolated sequence where the gestures for each word have been manually segmented.

The initial goal of the dataset was to translate greek sign language videos into greek written
language. For this reason, each word, together with etymological annotations, is mapped to an
isolated gesture. We proceed to group words that use the same isolated gesture together in the
following manner:

Etymological annotations The dataset contains various etymological annotations. For ex-
ample, the words annotated as EGW, EGW(1), EGW(91), EGW910) are grouped together,
ie. the etymological annotations discarded.

Noun and verb forms of greek words use the same sign language gesture and are unified.
For example, the label DOULEIAstands for the greek noun for work, while the label
DOULEUWstands for the greek verb for work.

Euphonic differences Words like HM'ERES andMERES are only euphonically different
but can be used interchangeably in greek writing and use the same gestures in greek sign
language.

Gender of possessive pronouns had to be merged. For example,DIKOS SOU referring
to the possessive pronoun yours which is shared with ”DIKO SOU” and ”DIK'H SOU”,
which are referring to the same possessive pronoun, but with a different grammatical
gender.

Skipped words Some words are skipped in greek sign language. AKOUmeaning ”listening”
and AKOUW meaning ”i listen” map to the same gesture.

Reduced form Instead some gestures have a reduced form. ”i listen” happened to have a
reduced form which was AKOUW MEIWNW . It has the same gesture (hand to ear)
but one touches the gesture with a finger while the other cusps the ear with the hand.
Whenever we noted such differences, we labeled them as two seperate gestures.

Miscellaneous words Some words happen to have the same greek sign language represen-
tation even though they have a different meaning. ADEIA meaning ”permission” and
AITHSH meaning ”application” is an example of this, see Figure 3.2.

After manually reviewing these gestures, 320 gesture classes were left over (10 more than stated
by the greek sign language dataset). 10 additional gesture classes were discarded as we could
not map them to a particular word and 22 single gestures were excluded because they could
not clearly be assigned to one of the classes. In the published dataset we refer to the discarded
labels as ”???”. As manual annotation is error prone, we verified using a cosine similarity test
on the embedding vectors that all classes were different from each other. Finally, we extracted
all meaningless hand movements in-between meaningful gestures from the continuous dataset.
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Figure 3.2.: ADEIA(permission) and AITHSH(application)

This was done by locating the isolated gestures in the continuous video sequence and extracting
the in-between frames. These meaningless movements are labeled as ”background” in the pub-
lished dataset. Additionally, we removed all sequences in the isolated and continuous dataset
where frames were missing.

After reviewing the gestures, we evaluated the two most readily available skeletal gesture recog-
nition frameworks to generate the skeletal representations: OpenPose [Cao et al. 2018] for 2D
skeletons and MediaPipe [Lugaresi et al. 2019] for 3D skeletons. OpenPose reconstructs 2D
skeletons with confidence values. MediaPipe on the other hand has separate models for 3D
body reconstruction and hand skeleton reconstruction. The 3D body model of MediaPipe esti-
mates three joint positions which form a triangle for the hands but no detailed hand skeleton.
The hand and body skeletons are merged into one large skeleton by adding edges between the
hand joints and the corresponding hand triangle joint of the body reconstruction. The colour
mapping in Figure 3.4 represents which hand joints get connected to which body joint. Hand
joints of the same colour are each connected by an edge to the corresponding joint on the body
of the same colour, see Figure 3.4.

Due to rapid movements of the gestures or occluded fingers, MediaPipe sometimes did not have
enough confidence to detect a left or a right hand in the image outside of the triangle (defined
below) associated to the body reconstruction, see Figure 3.3. The body recognition never fails
on the dataset.

Figure 3.3.: Sample gesture where the fingers are not found due to occlusion and rapid movement.
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Figure 3.4.: Missing hand positions take the the corresponding joint position of the body

3.1.2. Ninja dataset

To get quantitative results for detecting unknown gestures, we created our own isolated ninja
dataset based on ninja gestures of 13 classes from [Kishimoto 1999], which are based on Mudra
signs, with each at least 13 gesture instances per class, see Table 3.1. For segmenting, we
created a separate continuous ninja dataset of two sentences, sentence A using the first half of
the gestures in sequence, Bird – Monkey, and sentence B using Ox – Tiger. Each of these two
sentences has been repeated 4 times.
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Gesture Number of
gestures

Bird 17

Boar 13

Dog 13

Horse 15

Dragon 16

Kagebunshin 15

Monkey 15

Ox 14

Rabbit 14

Ram 15

Rat 15

Snake 14

Tiger 15

Table 3.1.: Number of iso-
lated gestures per
ninja class

Figure 3.5.: Ninja hand gestures illustrated by [Kishimoto 1999] plus the
Kagebunshin sign not listed here

3.2. Segmenting unknown meaningful gestures

The paper introducing the Entropic Open-Set loss [Dhamija et al. 2018], introduced in the Re-
lated Works section 2.4, thresholds the maximum value of the output probabilities to check if an
input is meaningful (belongs to a known class) or not, as its primary concern is rejecting unim-
portant background data. After we did empirical experiments on the final output probabilities
of the Entropic Open-Set model trained on the GSL dataset, see Figure 3.6, we found that the
output probabilities satisfy the following properties:

1. A meaningful known gesture has a clear significant class.

2. A meaningless background gesture surpasses no significant threshold on any class.

3. A meaningful unknown gesture has one or more significant classes. Combining the fea-
tures of these significant classes tends to represent the features of the new meaningful
unknown gesture, ie. we get a low-dimensional simple embedding.
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Entropic Open-Set Model - Each colour represents the confidence values of a different class over time
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Figure 3.6.: The confidence values among the 320 gestures reaching significant confidence peaks are
coloured differently to signify that unknown gestures can be a linear combination of multiple
known gestures. The blue dashed line represents meaningful gestures and the gray dotted
line is a background-like gesture.

3.2.1. Pronounced thresholding

Instead of simply thresholding the Softmax value we use the pronounced gap heuristic [Hiptmair
et al. 2016] usually used to find a sufficiently low dimensional representation of the data for
principal component analysis . In this way, meaningful unknown gestures, which as we have
observed tend to have more than one significant class, are better detected.

k = min

(
q :

qX

j=1

�2
j
� (1� ⌧) ·

NX

j=1

�2
j

)
for a threshold ⌧ ⌧ 1 (3.1)

Instead of singular values we use the entries of the Softmax probability vector sorted in descend-
ing order. This has not been done in previous literature. k is the dimensionality of the gesture
with respect to the meaningful gestures. Further, we call the k-dimensional gesture meaningful
if the dimensionality is smaller than a specified dimension . Intuitively, this is the case when
the gesture is only similar to   known gestures.

Given a sequence of skeletons containing various meaningful but unknown sign gestures, we
create a sliding window for every frame i in the sequence starting at frame i and ending at
frame ⌧ + i. Frames for which ⌧ + i lies outside the video are ignored. We choose ⌧ to be
the number of frames of an average unknown gesture1, in our case 15 frames of a 15fps video,
so the sliding window contains exactly one second of the skeletal sequence. Then we check
whether each gesture contains a pronounced gap or not and if it does we conclude that frame
i + bT/2c is part of a meaningful gesture. The final prediction is a binary vector whose j-th
entry predicts whether or not the j-th frame in the sequence contains a meaningful gesture or

1The average known gesture meanwhile was 17 frames long due to a few outliers.
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3. Gesture2Vec

not. Any consecutive 1’s in this binary vector are treated as indications of meaningful unknown
gestures, while consecutive 0’s in this binary vector are treated as indications of gaps between
meaningful gestures. The frames are segmented accordingly.
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3.2. Segmenting unknown meaningful gestures

MS-G3D model trained on Cross-Entropy Loss
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(a) MS-G3D trained on the Cross-Entropy loss

MS-G3D model trained on Cross-Entropy Loss with background class in solid yellow
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(b) MS-G3D trained on the Cross-Entropy loss with an additional background class, where the background
class is marked in solid yellow

MS-G3D model trained on the Entropic Open-Set Loss
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(c) MS-G3D trained on the Entropic Open-Set loss

Figure 3.7.: Sentence A1 filled with 7 unknown meaningful gestures from our continuous ninja dataset.
At frame x we get the final probabilities from the respective models for the gesture starting
at frame x and lapping over to frame x + k, in this case k = 15. The dotted blue lines
are ground-truth annotations of where the unknown meaningful gestures start and end. The
solid yellow line represents the background class. All other solid colours represent other
classes.
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3. Gesture2Vec

3.2.2. Denoising

Oftentimes the binary vector from the pronounced thresholding step is noisy, meaning a gesture
is wrongly detected for a single frame or a gap is detected for a single frame. We can safely
assume that gestures and gaps between gestures happen for longer than one frame, so we can
apply the following denoising procedure to smooth the model’s predictions over time.

We define a minimal gesture length gestmin and a minimal gap length gapmin (in frames). These
are removed by first removing the gestures of length 1, then removing gaps of length 1. Next,
gestures of length 2 are removed and then gaps of length 2 are removed and so on until the
respective minimal lengths are reached.

gestmin = 4

gapmin = 3

for i in max(gestmin, gapmin):

for pred in predictions:

if pred == 1 and len(neighborhood(pred)) <= min(i,gestmin):

pred = 0

for pred in predictions:

if pred == 0 and len(neighborhood(pred)) <= min(i,gapmin):

pred = 1

Figure 3.8.: Denoising pseudocode

3.2.3. Background-like gestures

There were two gestures that kept appearing at positions where there should be no meaningful
gestures only meaningless movement. The gesture GENNW 3.9, which is a gesture where the
hands are moved vertically downwards, something you constantly do between two meaning-
ful gestures. Furthermore, ENTAXEI 3.10 is a gesture in which your hands are pulled apart
horizontally, as though you just finished a gesture.

Ignoring these two gestures leads to slightly better segmentation results. For a comparison, see
Figure 3.11. We can remove a gesture either before applying the softmax by setting it to �1
or after, by taking the log of all the softmax values, removing the gesture by setting its entry to
�1 and recomputing the softmax values. We proceed to prove that this is equivalent.
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3.2. Segmenting unknown meaningful gestures

S = softmax
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We prove this case-wise over the vector entries k.
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(a) Frame 0 (b) Frame 8 (c) Frame 15

Figure 3.9.: GENNW moving hands downward and then reorienting them gesture.

(a) Frame 0 (b) Frame 5 (c) Frame 11

Figure 3.10.: ENTAXEI gesture pulling apart the hands horizontally.
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Entropic Open-Set Model - Prediction with problematic gestures
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(a) Prediction with the background-like gestures

Entropic Open-Set Model - Prediction without problematic gestures
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(b) Prediction without the background-like gestures

Figure 3.11.: Removing both GENNW and ENTAXEI (the dotted gray lines) has the following effect
on sentence B1 of the continuous ninja dataset (both denoised). Red is the prediction.

3.3. Embeddings

We evaluate three different embeddings extracted from the MS-G3D model trained on the greek
sign language dataset.

Using the standard settings, the size after the global pooling layer of the MS-G3D model has
size batchsize⇥384⇥36⇥75⇥1 (batch size ⇥ last channel size ⇥ temporal dimensions ⇥ joint
count ⇥ number of skeletons). Then a mean pooling layer is applied on the spatial & temporal
dimensions and the number of people, shrinking the size of the vector to batchsize⇥384. This is
where we extract Embedding A, denoted in the Figure 3.12. Then a single perceptron forward
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3. Gesture2Vec

layer of input dimension 384 and output dimension 350 (number of gestures) is applied to the
network, after which a standard unit Softmax function is applied to get the gesture probabilities.
Embedding B is extracted right before applying the Softmax on the last layer, see Figure 3.12.
These embeddings of size 384 and 350 per sample are then concatenated into:

Embedding C =

h
Embedding A | Embedding B

i
(3.14)

The embeddings have been uploaded to the Tensorflow Embedding Projector for further study,
see Figure 3.13 and footnotes 2,3

Figure 3.12.: MS-G3D architecture with its extracted Embeddings

3.3.1. Validate the effectiveness of the embeddings

To validate the effectiveness of the embeddings, we use various supervised learning techniques
which do not assume a simple structure on the dimensions, as the latent space feature dimen-
sions with complex meaning. We are interested in the supervised scenario, as we want users
to define gestures at run-time and be able to use them immediately. The performance of the
supervised methods should serve as an upper-bound to unsupervised clustering performance.
We use the following supervised techniques:

KNN(x) is the k-nearest neighbour algorithm applied on x neighbours.

MLP(x) is a multilayer perceptron model with 1 hidden layer of size x to classify the gestures.
2Embedding A, isolated ninja gestures only, standard loss: https://projector.

tensorflow.org/?config=https://gist.githubusercontent.com/bvoq/

5732374047d963bfb344ee02d8772a4c/raw/c39f0396fbca38b3b10aa22e8d74e6e721181f34/

projector

3Embedding A, with isolated ninja gestures and the entire validation set of isolated GSL
(signer 7), standard loss: https://projector.tensorflow.org/?config=https:

//gist.githubusercontent.com/bvoq/7f9f61df751f1ebf369ed8eff2c2bc01/raw/

1808932deafb0839efff9af99a855a238cdf4284/project
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3.3. Embeddings

Figure 3.13.: Embeddings visualised with the Tensorflow projector.

RandomForest is a random forest classifier with 100 estimators using the Gini criteria to
measure a split’s quality.

SVC is a degree 3 multi-class support vector machine with the one-vs-one scheme. A radial
basis kernel is used with � = 1

|C|⇤var(X) , where X is the embedding matrix, with a squared
l-2 regulariser of 1.0.

GaussianNB is a Gaussian Naive Bayes classifier with no priors.

Bagging[y] A square bracket indicates that aggregation of size y is applied to the model. Ag-
gregation is a technique to reduce variance among multiple instances of the same model
by taking the plurality of the predictions of these y models. For example, MLP(100)[10]
aggregates the predictions of 10 MLPs with a hidden layer of size 100.
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4

Results

4.1. Performance of MS-G3D on the Greek Sign

Language Dataset

The greek sign language dataset consists of 320 classes and 7 signers, each repeating the same
gestures/sentences 5 times. We validate all our models on one signer while training the model
on the other 6, so our performance scores are cross-signer validated scores.

We use three different models trained in the following manner:

Mstandard: is the MS-G3D model trained on the meaningful greek sign language gestures with
the Cross-Entropy loss.

Mbackground-as-class: is the MS-G3D model trained on the meaningful greek sign language ges-
tures and on the meaningless in-between movements as a separate background class with
the Cross-Entropy loss.

Mentropic-openset: is the MS-G3D model trained on the meaningful greek sign language gestures
and on the meaningless in-between movements with the Entropic Open-Set loss.

For training, all the MS-G3D models used 350 output classes, 320 of which were trained ges-
tures. Class 321 was used for training a background class in model Mbackground-as-class. The
other classes were untrained auxiliary classes leaving spare room for labelling unknown ges-
tures when extracting embeddings. We use NVIDIA Apex 16-bit floating point numbers during
training and as parameters. Ares was initialised uniformly at random with parameters between
[�1e-6, 1e-6] and W (p) was initialised using He’s initialisation [He et al. 2015] with scaling
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paramater a =
p
5 1. We train the models using stochastic gradient descent using a base

learning rate of 0.05 with 65 epochs, Nesterov momentum of 0.9 to dampen oscillations and
a l2-regularisation/weight decay parameter of 0.0003. The learning rate is halved at 45 epochs
and again at 55 epochs. The batch size is 16 and the forward batch size is 8 for the Cross-
Entropy loss-based models Mstandard and Mbackground-as-class and for the Entropic Open-Set loss-
based model Mentropic-openset the batch size is 8 with forward batch size 4.

Using the standard settings, the three STGCN modules have output channels sized {96, 192, 384}
with window size ⌧ = 8 and dilation stride d = 1 for the first module and d = 2 for the second
and third module. The starting frame size is T = 144 (padded with zeros), which is also used
for the first module, after which it is halved to 72 and finally 36 in subsequent layers.

On the greek dataset transformed with MediaPipe, we achieve a top-1 classification score of
roughly 87% while OpenPose achieves a top-1 classification score of roughly 66%, see Table
4.1. All other scores are evaluated on the MediaPipe trained models. Due to GPU memory
limitations, we trained the Entropic Open-Set model with batch size 8 and forward batch size 4,
while the models with a Cross-entropy loss were trained with batch size 16 and forward batch
size 8. Other than that, all the models have been trained with the same hyperparameters and
number of epochs.

Model Skeleton data Cross-signer
validation Top-1

Cross-signer
validation Top-5

Training
Time

Mstandard OpenPose 66.13% 87.81% 2576 min

Mstandard MediaPipe 87.08% 96.23% 2917 min

Mentropic-openset MediaPipe 87.67% 96.32% 6907 min

Mbackground-as-class MediaPipe 86.01% 94.14 % 4824 min

Table 4.1.: Performance of MS-G3D on the Greek Sign Language dataset [Adaloglou et al. 2020] af-
ter converting it with MediaPipe [Lugaresi et al. 2019] or OpenPose [Cao et al. 2018] into
skeletal sequences on the validation signer. The training times are different due to learning
background movements (almost doubling the dataset), skeleton joint count and batch sizes.

4.2. Segmentation

Segmentation is done with the models Mbackground-as-class by thresholding the background class
accuracy by ⌧ and with Mentropic-openset with threshold parameter ⌧ and maximum meaningful
dimensionality  as described in section 3.2.

The continuous ninja dataset, on which the segmentation is evaluated, is limited to 2 sentences
containing the 13 unknown meaningful gestures from the ninja dataset with 4 repetitions each,
totalling 4 · 7 + 4 · 6 = 52 gestures. Because it is hard to determine the start and end positions
of gestures precisely, we instead count the number of correct overlaps of detected gestures/gaps

1
https://github.com/pytorch/pytorch/issues/15314
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4.3. Recognition of unknown gestures

with the ground-truth gestures/gaps. An unaccounted gap or gesture in either the predictions or
the ground-truth label increases the error. The relative error is measured by dividing the error
by all gaps and gestures in the predicted and ground-truth labels. An implementation of the
precise error can be seen in the appendix, Figure A.1.

We grid-search ⌧ (the threshold) and  (the maximum meaningful dimensionality) based on this
error for a given gestmin and gapmin. By increasing the threshold ⌧ , the length of the gestures
becomes larger, but the length of the gaps become smaller. If the threshold ⌧ is increased by a
lot, the segmentation method detects more gestures but fewer gaps. Similarly, if the threshold
⌧ is decreased by a lot, the segmentation method detects more gaps but fewer gestures. We
present the optimal values of ⌧,, which minimise the error-metric for each of the segmentation
methods and achieve a relative accuracy rate of 95% relative accuracy based on this error-metric
as seen in Table 4.2.

Note that the model Mbackground-as-class trained on the Cross-Entropy loss has background class
activations that happen only for a frame or two. For this reason, we get better results if we keep
gapmin low for this model as shown by Table 4.2. The methods can be compared visually in
Figures A.3,A.4, A.5, A.6, A.7, A.8, A.9 and A.10.

Table 4.2.: Segmentation performances, EOSL=Entropic Open-Set Loss, CEL=Cross-Entropy Loss

Segmentation Method  ⌧ gestmin gapmin
missing
gestures

missing
gaps

Relative
error

EOSL based segmentation 8 0.007 3 3 2 4 0.053
EOSL based segmentation
wo. background-like gestures 16 0.0055 4 4 1 4 0.052

CEL with background class
based segmentation - 0.071 4 4 0 6 0.065

CEL with background class
based segmentation - 0.071 2 6 1 4 0.040

4.3. Recognition of unknown gestures

To test the effectiveness of our embedding, we classify the unknown meaningful gestures using
various supervised learning techniques. We divide our results based on the number of samples
needed to get an accurate result. The model settings are explained in section 3.3.

4.3.1. One-shot scenario

In the one-shot scenario, we have one embedding of a gesture from each class as our training
set. To classify a new gesture, we find its nearest neighbour in the embedding space.

KNN(1) - Only ninja dataset: In this scenario, we have precisely one embedding correspond-
ing to a gesture for each of the 13 ninja classes picked at random as a training set. Then we
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Model Algorithm Embedding A Embedding B Embedding C

Mstandard KNN(1) 0.61925 0.59998 0.600454

Mentropic-openset KNN(1) 0.59604 0.59042 0.58992

Mbackground-as-class KNN(1) 0.59778 0.58664 0.58948

Table 4.3.: 1-shot performance on the ninja dataset. 13000 models were trained per entry and their
performance averaged. Embedding A, extracted from model Mstandard, has the highest clas-
sification accuracy of 61.925%.

Model Algorithm Embedding A Embedding B Embedding C

Mstandard KNN(1) 0.5775 0.5436 0.5520

Mentropic-openset KNN(1) 0.55415 0.54462 0.54585

Mbackground-as-class KNN(1) 0.53992 0.51631 0.51369

Table 4.4.: 1-shot performance on the ninja+greek dataset. 13000 models were trained per entry and
their performance averaged. Embedding A, extracted from model Mstandard, has the highest
classification accuracy of 57.775%.

classify a gesture, which is not used in the training set, chosen at random from the 13 ninja
classes. This training and classification procedure is repeated 13000 times, with 1000 random
classification samples from each class. We get a final accuracy of around 58 � 62%. See the
results in Table 4.3.

KNN(1) - Greek and ninja dataset: In this scenario, we have precisely one embedding corre-
sponding to a gesture for each of the 13 ninja classes and each of the 320 greek sign language
classes picked at random as a training set. Then we classify a gesture, which is not used in the
training set, chosen at random from the 13 ninja classes. This training and classification proce-
dure is repeated 13000 times, with 1000 random classification samples from each class. We get
a final accuracy of around 51�58%. See the results in Table 4.4. Embedding A, extracted from
model Mstandard, has the highest classification accuracy of 57.775%.
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Algorithm Embedding A Embedding B Embedding C

KNN(1) 0.7956 0.7682 0.7727

KNN(2) 0.7822 0.7508 0.7552

KNN(3) 0.7576 0.7260 0.7287

KNN(4) 0.7578 0.7319 0.7464

KNN(5) 0.7361 0.7185 0.7168

KNN(6) 0.7296 0.7064 0.7056

SVC[10] 0.8002 0.7997 0.8144

RandomForest[10] 0.7987 0.7845 0.8044

MLP(100)[10] 0.8753 0.8368 0.8438

Table 4.5.: 4-shot performance on embeddings extracted from model Mstandard. 13000 models were
trained per entry and their performance averaged. The best performance was achieved by
Embedding A trained on MLP(100)[10] with 87.53% classification accuracy.

4.3.2. 4-shot scenario

In the 4-shot scenario, we choose a set of 4 embeddings per class as our training set. Then
an embedding is chosen uniformly at random from a given class to be predicted. To classify a
new embedding we use machine learning techniques such as K-Nearest-Neighbour, Multilayer
Perceptron with a hidden layer of size 100, Support Vector Classification one-vs-one, Random-
Forests, Gaussian Naive Bayes as discussed in 3.3. Each method is trained 13000 times on
different 4 randomly chosen embeddings per class, creating 13000 models. 1000 embeddings
from each class are picked at random and evaluated by one of the 13000 models, in such a way,
that the embedding to be predicted does not lie in the training set.

Embedding A, extracted from model Mstandard, trained on 10 aggregated neural networks with
a single hidden layer size of 100, has the highest classification accuracy of 87.53%. See Table
4.5, 4.6 and 4.7 for the results.

4.3.3. Entire scenario

Here we use leave-one-out cross validation (LOOCV) to obtain our results on the entire ninja
dataset to prevent overfitting, see Table 4.8, 4.9 and 4.10. Embedding B, extracted from model
Mstandard, trained on 10 aggregated random forests, has the highest classification accuracy of
94.21%.
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Algorithm Embedding A Embedding B Embedding C

KNN(1) 0.7759 0.7667 0.7745

KNN(2) 0.7481 0.7448 0.7367

KNN(3) 0.7418 0.7352 0.7385

KNN(4) 0.7435 0.7238 0.7348

KNN(5) 0.7171 0.7065 0.7184

KNN(6) 0.7057 0.6975 0.6993

SVC[10] 0.7716 0.8021 0.8117

RandomForest[10] 0.7847 0.7654 0.7889

MLP(100)[10] 0.8414 0.8286 0.8376

Table 4.6.: 4-shot performance on embeddings extracted from model Mentropic-openset. 13000 models
were trained per entry and their performance averaged. The best performance was achieved
by Embedding A trained on MLP(100)[10] with 84.14% classification accuracy.

Algorithm Embedding A Embedding B Embedding C

KNN(1) 0.7655 0.7538 0.7477

KNN(2) 0.7438 0.7348 0.7344

KNN(3) 0.7372 0.7232 0.7276

KNN(4) 0.7303 0.7258 0.7288

KNN(5) 0.7094 0.7087 0.7154

KNN(6) 0.6920 0.6926 0.6914

SVC[10] 0.7425 0.7366 0.7858

RandomForest[10] 0.7692 0.7530 0.7764

MLP(100)[10] 0.8368 0.7987 0.8161

Table 4.7.: 4-shot performance on embeddings extracted from model Mbackground-as-class. 13000 models
were trained per entry and their performance averaged. The best performance was achieved
by Embedding A trained on MLP(100)[10] with 83.68% classification accuracy.
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Algorithm Embedding A Embedding B Embedding C

KNN(1) 0.8684 0.8316 0.8316

KNN(2) 0.8684 0.8368 0.8421

KNN(3) 0.8895 0.8579 0.8684

KNN(4) 0.8947 0.8526 0.8579

KNN(5) 0.8579 0.8579 0.8632

KNN(6) 0.8789 0.8737 0.8737

KNN(7) 0.8579 0.8211 0.8263

KNN(8) 0.8579 0.8421 0.8421

KNN(9) 0.8474 0.8316 0.8368

KNN(10) 0.8737 0.8474 0.8474

KNN(11) 0.8474 0.8105 0.8158

KNN(12) 0.8474 0.8105 0.8105

MLP(100)[10] 0.9158 0.9368 0.9158

RandomForest[10] 0.9105 0.9421 0.9263

SVC[10] 0.8895 0.9053 0.8895

GaussianNB[10] 0.8789 0.8263 0.8579

Table 4.8.: LOOCV on embeddings extracted from the model Mstandard. Embedding B trained on Ran-
domForest[10] achieved the highest accuracy of 94.21%.
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Algorithm Embedding A Embedding B Embedding C

KNN(1) 0.8632 0.8579 0.8579

KNN(2) 0.8526 0.8421 0.8474

KNN(3) 0.8789 0.8526 0.8526

KNN(4) 0.8632 0.8368 0.8421

KNN(5) 0.8526 0.8263 0.8263

KNN(6) 0.8316 0.8368 0.8316

KNN(7) 0.8316 0.8368 0.8421

KNN(8) 0.8474 0.8474 0.8421

KNN(9) 0.8316 0.8474 0.8368

KNN(10) 0.8211 0.8526 0.8474

KNN(11) 0.8368 0.8316 0.8368

KNN(12) 0.8105 0.8316 0.8316

MLP(100)[10] 0.9158 0.9211 0.9105

RandomForest[10] 0.9316 0.8895 0.9105

SVC[10] 0.9053 0.8947 0.8947

GaussianNB[10] 0.8579 0.8737 0.8632

Table 4.9.: LOOCV on embeddings extracted from the model Mentropic-openset. Embedding A trained on
RandomForest[10] achieved the highest accuracy of 93.16%.
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4.3. Recognition of unknown gestures

Algorithm Embedding A Embedding B Embedding C

KNN(1) 0.8316 0.8158 0.8158

KNN(2) 0.8474 0.8263 0.8316

KNN(3) 0.8632 0.8263 0.8263

KNN(4) 0.8684 0.8579 0.8632

KNN(5) 0.8474 0.8526 0.8526

KNN(6) 0.8316 0.8316 0.8368

KNN(7) 0.8158 0.8316 0.8316

KNN(8) 0.8158 0.8158 0.8211

KNN(9) 0.8211 0.8211 0.8211

KNN(10) 0.8211 0.8000 0.8000

KNN(11) 0.8105 0.7789 0.7789

KNN(12) 0.7842 0.7895 0.7895

MLP(100)[10] 0.9263 0.8947 0.9053

RandomForest[10] 0.9000 0.8842 0.8895

SVC[10] 0.8632 0.8737 0.8737

GaussianNB[10] 0.7000 0.8526 0.7158

Table 4.10.: LOOCV on embeddings extracted from the model Mbackground-as-class. Embedding A trained
on MLP(100)[10] achieved the highest accuracy of 92.63%.
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4. Results

4.4. Analysing the results

We have shown that segmenting unknown gestures can be effectively performed with the En-
tropic Open-Set loss using pronounced thresholding and Cross-Entropy loss by introducing a
background class and thresholding on it. According to our overlapping error criteria, we get
an accuracy rate of 95% on the segmentation. Alternatively, if we look at missing gestures
and missing gaps we see that we have 1 missing gesture and 4 missing gaps, meaning we have
51
52 = 98% recognition of gestures and 47

51 = 92% recognition of gaps.

Further, the best performing embeddings were all extracted from Mstandard, indicating that em-
beddings are best extracted from a regularly trained MS-G3D model using the Cross-Entropy
loss. We suspect that this is the case because the other models do not only create good classifica-
tion embeddings but are also burdened by distinguishing meaningful gestures from meaningless
in-between movements.

In the 1-shot scenario, Embedding A outperformed the other embeddings with nearest neigh-
bour search, independent of which functions were used to train the embeddings. Similarly, in
the 4-shot scenario, Embedding A, trained on ten aggregated neural networks with hidden layer
size 100, outperformed the other embeddings, independent of which loss functions were used
to train the embeddings. For this reason, we conclude that for a small number of samples, val-
ues extracted from the latent space one layer before the Softmax layer, ie. Embedding A, form
the best embeddings. It is harder to discern which machine learning method and embedding
achieved the best performance when evaluating the entire ninja dataset.

Ultimately, the pipeline can be used as-is in cases where classification performance of 87% per
gesture for 4 samples per class is acceptable but needs further improvement for more demanding
applications.
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5

Conclusion and Future Work

5.1. Conclusion

In conclusion, we proposed a pipeline for future gesture recognition work with unknown ges-
tures at runtime, as seen in Figure 3.1. We have shown that segmenting unknown gestures can
be effectively performed with the Entropic Open-Set loss using pronounced thresholding and
Cross-Entropy loss by introducing a background class and thresholding on it. According to our
overlapping error criteria, we get an accuracy rate of 95% on the segmentation. Alternatively,
if we look at missing gestures and missing gaps we see that we have 1 missing gesture and 4
missing gaps, meaning we have 51

52 ⇡ 98% recognition of gestures and 47
51 ⇡ 92% recognition

of gaps.

Further, we have proposed a method to extract effective embeddings A, B and C from MS-
G3D models Mstandard, Mentropic-openset and Mbackground-as-class. This extraction should also be
extendable to other graph convolutional neural networks.

The best performing embeddings were all extracted from Mstandard, indicating that embeddings
are best extracted from a regularly trained MS-G3D model using the Cross-Entropy loss. We
suspect that this is the case because the other models do not only create good classification
embeddings but are also burdened by distinguishing meaningful gestures from meaningless in-
between movements.

In the 1-shot scenario, Embedding A outperformed the other embeddings with nearest neigh-
bour search, independent of which functions were used to train the embeddings. Similarly, in
the 4-shot scenario, Embedding A, trained on ten aggregated neural networks with hidden layer
size 100, outperformed the other embeddings, independent of which loss functions were used
to train the embeddings. For this reason, we conclude that for a small number of samples,
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5. Conclusion and Future Work

values extracted from the latent space one layer before the Softmax layer, ie. Embedding A,
form the best embeddings. It is harder to discern which machine learning method and embed-
ding achieved the best performance when evaluating the entire ninja dataset. However, the best
performing embeddings were all extracted from Mstandard.

Finally, the pipeline can be used as-is in cases where classification performance of 87% per
gesture for 4 samples per class is acceptable but needs further improvement for more demanding
applications, which brings us to the Future Work section.

5.2. Future Work

Any improvement in the pipeline 3.1 will lead to better unknown gesture classification accu-
racies. Concretely, we suggest improving models such as MediaPipe, so hand skeletons are
present in all frames. Changing from OpenPose to MediaPipe leads to a performance increase
of 66.13% to 87.08% and will likely contribute the most to the model’s performance. Further, a
temporal convolution over the output probability values of the respected classes might signifi-
cantly increase segmentation performance instead of fitting ⌧ and  variables. However, to train
this without overfitting, a larger dataset than the continuous ninja dataset is required. Lastly, we
suggest using an autoencoder to generate better embeddings, where the encoder has a structure
similar to MS-G3D or another graph convolutional neural network.

Our suggested segmentation techniques can be tested on other neural networks that use a Cross-
Entropy loss. Concretely, future work can apply this method to other neural networks used in
gesture recognition or even to research fields like video segmentation. In addition, future work
can extract embeddings from the skeletal reconstruction networks directly, so the embedding
step can already be applied when reconstructing the skeleton and be skipped later in the pipeline.

Lastly, alternatives to Softmax [Banerjee et al. 2020] could be combined with the Entropic
Open-Set loss method to get better performance.
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A. Information For The Few (Appendix)

err = 0

totposserr = 0

predstate = 0

truthstate = 0

for row in range(len(predictions)):

pred = predictions[row]

truth = 0

if row+shiftoffset<len(ground_truth):

truth = ground_truth[row+shiftoffset]

if pred == 0:

if predstate == 1:

err += 1

elif predstate == 2:

totposserr += 1

if predstate != -2:

predstate = -1

if truth == 0:

if truthstate == 1:

err += 1

elif truthstate == 2:

totposserr += 1

if truthstate != -2:

truthstate = -1

if pred == 1:

if predstate == -1:

err += 1

elif predstate == -2:

totposserr += 1

if predstate != 2:

predstate = 1

if truth == 1:

if truthstate == -1:

err += 1

elif truthstate == -2:

totposserr += 1

if truthstate != 2:

truthstate = 1

if pred == 1 and truth == 1 and predstate == 1 and truthstate == 1:

predstate = 2

truthstate = 2

if pred == 0 and truth == 0 and predstate == -1 and truthstate == -1:

predstate = -2

truthstate = -2

relativeerror = err/totposserr

Figure A.1.: Overlapping error criteria based on which ⌧ , the threshold, and , the minimum dimen-
sionality for a gesture to be meaningful, were fitted with grid-search. The error counts the
number of correct prediction/ground truth gaps/gesture overlaps by starting at frame 0 and
matching off gestures and gaps from the predicted values with the ground truth values. If
any gesture or gap did not find a match it is counted as an error.
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class EntropicOpenSetLoss(torch.nn.CrossEntropyLoss):

__constants__ = [’ignore_index’, ’reduction’]

ignore_index: int

def __init__(self, weight: Optional[Tensor] = None, size_average=None,

ignore_index: int = -100,

reduce=None, reduction: str = ’mean’) -> None:

self.ignore_index = ignore_index

super(nn.CrossEntropyLoss, self).__init__(weight, size_average,

reduce, reduction)

def forward(self, input: Tensor, target: Tensor) -> Tensor:

full_target = [i for i in range(0,backgroundid)]

full_target_t = torch.tensor(full_target, requires_grad=False, dtype=

torch.long).cuda()

batch_size = input.shape[0]

loss = 0

for tidx, tid in enumerate(target):

if tid == backgroundid: # background case

loss += 1.0/batch_size

* 1.0/backgroundid

* nn.functional.cross_entropy(

input[tidx].repeat(backgroundid,1),

full_target_t,

weight=self.weight,

ignore_index=self.ignore_index,

reduction=self.reduction)

else: # normal case

loss += 1.0/batch_size

* nn.functional.cross_entropy(

input[tidx].unsqueeze(0),

target[tidx].unsqueeze(0),

weight=self.weight,

ignore_index=self.ignore_index,

reduction=self.reduction)

return loss

Figure A.2.: An optimised implementation for the Entropic OpenSet loss. Note that the indices
{0, . . . , backgroundid�1} represent classes of meaningful gestures while {backgroundid}
denotes the background class.
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A. Information For The Few (Appendix)

Figure A.3.: Continuous ninja sentence A1 with segmentation predictions in dashed red and ground-
truth segmentations in dashed blue. The background class is denoted in solid yellow where
available and the other output probability values of each model are denoted in grey.52



Figure A.4.: Continuous ninja sentence A2 with segmentation predictions in dashed red and ground-
truth segmentations in dashed blue. The background class is denoted in solid yellow where
available and the other output probability values of each model are denoted in grey. 53



A. Information For The Few (Appendix)

Figure A.5.: Continuous ninja sentence A3 with segmentation predictions in dashed red and ground-
truth segmentations in dashed blue. The background class is denoted in solid yellow where
available and the other output probability values of each model are denoted in grey.54



Figure A.6.: Continuous ninja sentence A4 with segmentation predictions in dashed red and ground-
truth segmentations in dashed blue. The background class is denoted in solid yellow where
available and the other output probability values of each model are denoted in grey. 55



A. Information For The Few (Appendix)

Figure A.7.: Continuous ninja sentence B1 with segmentation predictions in dashed red and ground-
truth segmentations in dashed blue. The background class is denoted in solid yellow where
available and the other output probability values of each model are denoted in grey.56



Figure A.8.: Continuous ninja sentence B2 with segmentation predictions in dashed red and ground-
truth segmentations in dashed blue. The background class is denoted in solid yellow where
available and the other output probability values of each model are denoted in grey. 57



A. Information For The Few (Appendix)

Figure A.9.: Continuous ninja sentence B3 with segmentation predictions in dashed red and ground-
truth segmentations in dashed blue. The background class is denoted in solid yellow where
available and the other output probability values of each model are denoted in grey.58



Figure A.10.: Continuous ninja sentence B4 with segmentation predictions in dashed red and ground-
truth segmentations in dashed blue. The background class is denoted in solid yellow where
available and the other output probability values of each model are denoted in grey. 59
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